Identification by Mn2+ rescue of two residues essential for the proton transfer of tRNase Z catalysis

نویسندگان

  • Asako Minagawa
  • Hiroaki Takaku
  • Ryohei Ishii
  • Masamichi Takagi
  • Shigeyuki Yokoyama
  • Masayuki Nashimoto
چکیده

Thermotoga maritima tRNase Z cleaves pre-tRNAs containing the 74CCA76 sequence precisely after the A76 residue to create the mature 3' termini. Its crystal structure has revealed a four-layer alphabeta/betaalpha sandwich fold that is typically found in the metallo-beta-lactamase superfamily. The well-conserved six histidine and two aspartate residues together with metal ions are assumed to form the tRNase Z catalytic center. Here, we examined tRNase Z variants containing single amino acid substitutions in the catalytic center for pre-tRNA cleavage. Cleavage by each variant in the presence of Mg2+ was hardly detected, although it is bound to pre-tRNA. Surprisingly, however, Mn2+ ions restored the lost Mg2+-dependent activity with two exceptions of the Asp52Ala and His222Ala substitutions, which abolished the activity almost completely. These results provide a piece of evidence that Asp-52 and His-222 directly contribute the proton transfer for the catalysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The fission yeast Schizosaccharomyces pombe has two distinct tRNase Z(L)s encoded by two different genes and differentially targeted to the nucleus and mitochondria.

tRNase Z is the endonuclease that is involved in tRNA 3'-end maturation by removal of the 3'-trailer sequences from tRNA precursors. Most eukaryotes examined to date, including the budding yeast Saccharomyces cerevisiae and humans, have a single long form of tRNase Z (tRNase ZL). In contrast, the fission yeast Schizosaccharomyces pombe contains two candidate tRNase ZLs encoded by the essential ...

متن کامل

Arabidopsis encodes four tRNase Z enzymes.

Functional transfer RNA (tRNA) molecules are a prerequisite for protein biosynthesis. Several processing steps are required to generate the mature functional tRNA from precursor molecules. Two of the early processing steps involve cleavage at the tRNA 5' end and the tRNA 3' end. While processing at the tRNA 5' end is performed by RNase P, cleavage at the 3' end is catalyzed by the endonuclease ...

متن کامل

Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay

Paired metal ions have been proposed to be central to the catalytic mechanisms of RNase H nucleases, bacterial transposases, Holliday junction resolvases, retroviral integrases and many other enzymes. Here we present a sensitive assay for DNA transesterification in which catalysis by human immunodeficiency virus-type 1 (HIV-1) integrase (IN) connects two DNA strands (disintegration reaction), a...

متن کامل

The N-terminal half-domain of the long form of tRNase Z is required for the RNase 65 activity.

Transfer RNA (tRNA) 3' processing endoribonuclease (tRNase Z) is an enzyme responsible for the removal of a 3' trailer from pre-tRNA. There exists two types of tRNase Z: one is a short form (tRNase ZS) that consists of 300-400 amino acids, and the other is a long form (tRNase ZL) that contains 800-900 amino acids. Here we investigated whether the short and long forms have different preferences ...

متن کامل

Chemical rescue in catalysis by human carbonic anhydrases II and III.

The maximal velocity of catalysis of CO(2) hydration by human carbonic anhydrase II (HCA II) requires proton transfer from zinc-bound water to solution assisted by His 64. The catalytic activity of a site-specific mutant of HCA II in which His 64 is replaced with Ala (H64A HCA II) can be rescued by exogenous proton donors/acceptors, usually derivatives of imidazole and pyridine. X-ray crystallo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic Acids Research

دوره 34  شماره 

صفحات  -

تاریخ انتشار 2006